A Parabolic Theory of Load Balance

Alan Heirich
Stephen Taylor

Computer Science Department
California Institute of Technology

Caltech-CS-TR-93-25

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Parabolic Theory of Load Balance £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 18
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Parabolic Theory of Load Balance !

Alan Heirich & Stephen Taylor

Scalable Concurrent Programming Laboratory
California Institute of Technology

Abstract

We derive analytical results for a dynamic load balancing algo-
rithm modeled by the heat equation u; = V?u. The model is appro-
priate for quickly diffusing disturbances in a local region of a compu-
tational domain without affecting other parts of the domain. The al-
gorithm is useful for problems in computational fluid dynamics which
involve moving boundaries and adaptive grids implemented on mesh-
connected multicomputers. The algorithm preserves task locality and
uses only local communication. Resulting load distributions approxi-
mate time asymptotic solutions of the heat equation. As a consequence
it is possible to predict both the rate of convergence and the quality
of the final load distribution. These predictions suggest that a typical
imbalance on a multicomputer with over a million processors can be
reduced by one order of magnitude after 105 arithmetic operations at
each processor. For large n the time complexity to reduce the expected
imbalance is effectively independent of n.

1The research described in this report is sponsored primarily by the Defense Advanced
Research Projects Agency, DARPA Order number 8176, and monitored by the Office of
Naval Research under contract number N00014-91-J-1986.

1. INTRODUCTION

The emergence of massively parallel computers has introduced new con-
siderations for designers of concurrent algorithms. Two primary issues when
dealing with irregular problems are load balancing and scalability. A vari-
ety of algorithms for dynamic load balancing exist for systems with small
numbers of computers [2]. These algorithms are elegant, efficient and prov-
ably correct. Unfortunately they require that each processor communicate
information about it’s workload to a central processor which performs the
computation. One of our research goals is to develop algorithms which scale
to the next generation of fine-grain mesh-connected multicomputers [10, 11]
which have potentially hundreds of thousands of processors. Therefore we
seek algorithms which emphasize nearest neighbor communication and dis-
tribute the computational work across all of the affected processors.

We frequently encounter the need for dynamic load balancing in our work
on computational fluid dynamics. This occurs in finite volume or finite dif-
ference simulations in which we have partitioned the computational domain
across a set of processors on a multicomputer. We can initially distribute the
computational grid points in such a way as to make the load on each processor
approximately the same. The load remains balanced until the computational
grid is adapted to follow shock waves or moving boundaries. These adap-
tations create grid points in some parts of the domain and destroy points
in other parts. As a result the loads on the processors become unequal and
dynamic rebalancing is necessary.

This paper describes an efficient algorithm to diffuse local load imbal-
ances on a mesh-connected multicomputer. The algorithm is parameterized
and can achieve any desired refinement of balance to the limits of machine
precision. It uses no global communication although it does require that
processors at exterior points communicate with their counterparts on the
opposite sides of the mesh. (We are presently considering strategies to elim-
inate this requirement.) The algorithm can be used to rebalance a local
portion of a computational domain while the normal computation executes
concurrently over the rest of the domain. The algorithm can be implemented
using policies to minimize the distances over which tasks migrate during their
lifetime. This is a desirable property for many simulation problems because
it minimizes the cost of communication during the simulation.

We have chosen to model the process of rebalancing by the heat equation

u; = V*u on a domain with periodic boundary conditions. Heat diffusion
is an apt analogy for the types of problems that we encounter. A load
imbalance is typically caused by a computational grid adapting locally and
asynchronously. This is analogous to creating a heat source or sink at a point
inside a physical volume. Just as heat diffuses away from the source or toward
the sink in the physical volume we want work to diffuse away from overloaded
processors or toward underutilized processors in the multicomputer. The
heat equation is an efficient numerical model for diffusing point sources as
it exhibits exponential convergence to equilibrium of all Fourier modes and
fast exponential convergence of high wavenumber modes.

Similar informal notions have appeared in the literature [3] such as the
Rediflow algorithm of Keller et al [8]. Although such approaches are intu-
itively persuasive they may also be incorrect and lead to unbalanced loads
or unstable behavior. Our algorithm is the first “diffusive” method for mesh
architectures which is scalable and has rigorous proofs of correctness and con-
vergence. It is also the first effort based on a formal model of the rebalancing
process and the first demonstration that established numerical methods for
grid based computations can lead to practical algorithms for mesh-connected
multicomputers. We are currently exploring implementations of this and
other models.

The first analytical work on diffusive dynamic load balancing is due to
Cybenko [4]. In addition to an optimal diffusive method for hypercube ar-
chitectures he presents an elegant analysis of a general iterative scheme for
arbitrary interconnection patterns. His scheme distributes the computational
work across all of the affected processors but does not restrict itself to nearest
neighbor communication. Hong, Tan and Chen [6] appreciate the importance
of local communication and derive convergence results for nearest neighbor
schemes on hypercubes. Unfortunately their results do not apply to mesh-
connected architectures and do not take advantage of numerical solution
methods for differential equations.

2. THE DIFFUSIVE HEAT BALANCING ALGORITHM

We interpret the workload as a vector @ which is distributed across the proces-
sors of a three dimensional mesh-connected multicomputer of n processors.
The algorithm simulates the passage of “artificial time” during which the
workload diffuses according to u; = V?u. After this time has elapsed the
maximum imbalance |u;,, . — @| has been reduced by a given factor a.

2

1. Initialization:

Choose a desired reduction o in load imbalance. Solve the following
inequality numerically for 7 (see table I for example solutions)

271 27 g 2rk\]™
_Z[l—l—aZ(n/3~cosm—cosm)] <a (1)

7.71

where ¢, 7, k are indexed from 0 to (nI/ 3) /2 — 1 and the case 1 = j =
k = 0 is omitted. Determine a parameter v related to accuracy of the

resulting solution.
|
v = [_“_1 n(i) l 2)
n (1+6a)

At every processor z,y, z adjust the workload ug .

2. Rebalancing:

for 1=1 to [r]| /* outer loop */
Upg = Ug,y,z

for m=1 to v /* inner loop */

m) __ Uo 15 (m-1) m—1)
U‘:(Z,‘,y),z - 1 + 6a + (1 + 6 > (1"+11yi + ug; 1,y,z+ (3)
m—1 m— m—1 m—
(,y+1)z + (7?]") + i(l: y1z'|21 + (TYy2—))

endfor /* inner loop */

Exchange (aug’;z - au’(”)) units of work with every neighbor ',
Uy = UL,

endfor /* outer loop */

DISCUSSION

The algorithm consists of two loops. We show in the following sections of this
paper that these loops compute an approximate solution to a diffusive process

3

(e, n) n (total processors)
| 512 4,096 32K 256K 10°
0.1 8 6 6 3 3
a 0.01 297 302 245 214 204
0.001 | 6,605 12,589 13,795 11,044 9,895

Table 1: outer loop iterations as a function of multicomputer size n and
quality of balance a.

described by the heat equation u; = V2u. The outer loop is responsible for
advancing artificial time by a step dt. This proceeds until a time has elapsed
that is sufficient to diffuse the load imbalance. The inner loop is responsible
for computing the new value of the load at a specific time step ¢ = (I)dt.
When the inner loop has computed the new value an exchange operation
causes the load at each processor to equal this value.

Each processor communicates only with it’s six neighbors in the three di-
mensional mesh. A processor which is at an exterior mesh boundary may lack
as many as three of these neighbors in the physical mesh. These exterior pro-
cessors communicate with “logical” neighbors at exterior points on opposite
sides of the mesh. This makes the mesh logically spherical and implements
the periodic boundary conditions on which our analysis depends.

The cost of the rebalancing phase is the sum of two costs: the cost to
compute the new load, represented by the inner loop, and the cost to ex-
change work among the processors. Each inner loop iteration (3) requires
seven arithmetic operations and six bidirectional exchanges of a single num-
ber at each processor. The total number of iterations is the product 7v. The
value of v is always < 3 for 0 < a < 1. As table I shows 7 is 5 for a rebal-
ancing operation involving one million processors when « is 0.1. Assuming a
communication rate within a factor of ten of the instruction rate the cost to
reduce the expected load imbalance on a million processor multicomputer by
a factor o = 0.1 is about 10v(a)7(a,n) = 10(3)5 = 150 instruction cycles.
This requires less than 4 ps of real time on a multicomputer with 40 MHz
processors [11].

For fluid dynamics simulations we would like to preserve task locality
while we redistribute portions of the computational domain. This is true for
many simulation problems because communication rates are highest between
adjacent portions of the domain and as a consequence communication cost

4

is inversely related to locality. In this algorithm locality can be preserved by
using an appropriate exchange policy. One such policy would be to assume
units of work represent portions of a domain which has been decomposed
contiguously across the processors. Under this assumption each neighboring
processor represents a neighboring portion of the domain. Any exchange
policy which minimizes average pairwise distance between units of work on
a common processor maximizes locality.

We would also like to rebalance local portions of a domain without having
to interrupt the rest of the computation. The algorithm can be implemented
in this way simply by restricting it to a rectangular subportion of the mul-
ticomputer mesh. If the algorithm were restricted to a cube then in the
following analysis the term n would represent the number of processors in
the cube. If the restricted subportion were not a cube then n would be taken
as the length of the longest side raised to the third power. This would ensure
that convergence bounds reflect worst case estimates.

The reader should understand that the parameter a in the following anal-
ysis represents a reduction in the expected imbalance rather than a measure
of the final imbalance. Actual measurements of imbalance require global
communication which is contrary to our stated goals. Various implementa-
tion policies can be formulated to achieve guaranteed measures of imbalance.
For example if the size of the initial disturbance is known then o can be
set to remove this disturbance. In this paper we avoid further discussion of
the numerous options which exist for implementation policies. Our goal is
to establish a sound theoretical basis on which to implement practical al-
gorithms. We are presently considering implementation policies so that we
can incorporate these results into our ongoing work in computational fluid
dynamics.

3. DERIVATION OF THE REBALANCING PHASE

In this section we demonstrate the relationship between our algorithm
and the process of diffusion described by the heat equation u; = V?u. We
first derive a finite difference approximation to the heat equation. This rep-
resentation is implicit which means that in order to advance the process of
diffusion it is necessary to invert a coefficient matrix. We choose to invert
the matrix by Jacobi iteration and thus we arrive at the inner loop (3) of the
algorithm.

THE HEAT EQUATION AND FINITE DIFFERENCES

Consider the parabolic heat equation in three dimensions
Uy = VU = Uy + Uyy + U (4)
Taylor expanding in ¢ with all derivatives evaluated at (z,y,2,t)
u(z,y,z,t+dt) = u(z,y,2,t)+wdt + 0(dt?)
v — (u(w,y,z,t—{— dt) — u(m,y,z,t)) +0(d)

dt

We obtain the second order terms by expanding in spatial variables where
omitted coordinates are interpreted as (z,y, z,t + dt)

u(z +dz,-,--) = u(z,-,-,-)+ ude +

2 3
2
u(z —dz,-,-,") = ulz,,-,)— uzdz + um%— —

dz?

u(z + dz, -,)+ u(z —dz,) = 2u(z,,) + ugedz® + O(dz?)

v — (u(w +dz,,)+ u(mé;;l:c, Heye) = 2u(z, -, -y)) 4 O(da?)

Similar expansions in y, z show that the heat equation can be rewritten

u(.’ ot dt) — u(-, . .,t) _ (u(a; + dx’ ey) + u(:v —dz,-,-,) —_ Qu(.7 ey))

dt dx?
+ u('ay+dya'a')+u('7y"—dya'v')_zu('aﬁ'v')
dy?
. . dz. . ey —) — . e e
+(”(’ LasuMAAiMe S))+O(dt,dw2,dy2,dz2)

Taking dz = dy = dz we can express u(z,y, 2,t) in terms of time ¢ + dt and
approximate the heat equation to within O(dt, dz?)

u(m, y3z>t) ~ (1 + 625»!2-) u(', K] 'at + dt) - d—c,i'ﬂ% [U(IE + d:l,', "y) + u(:c - dII}, R})
+u('7y + dyv)) + u('7y - dy7)) + ’U,(-, 52+ dZ,) + u('a X2 dZ,)]

6

Notice that if we let o = thz the preceding equation can be rewritten

Ugy (1) = (1 +60) Ugy,.(t + dt) — & [tgy1,y,:(t + dt) + Up_1,4,.(t + dP)
+ua:,y+l,z(t + dt) + ua:,y—l,z(t + dt) + u:z:,y,z+l (t + dt) + Ug,y,z—1 (t + dt)]
(5)
SIMULATING THE PROCESS OF DIFFUSION

We can consider (5) as a vector equation if we assign coordinates z,y,z to
the elements of a vector 4 in the natural way,

d(t) = Aid(t + dt) (6)

All terms in # on the right hand side represent values at time ¢ + d¢. A finite
difference scheme of this sort is said to be “implicit” because values at time
t are expressed as a function of values at time ¢ + dt. Implicit schemes are
known to have desirable stability properties. In particular the error terms
do not accumulate in successive solutions so the error in the final solution is
O(a). In order to compute solutions at successive time intervals df we must
invert the coefficient matrix A to solve

d(t+ dt) = A7Vii(t) (7)

There are many possible ways to compute A~'4(¢). In this paper we consider
the method of Jacobi iteration [5] as it maintains locality of communication
and therefore provides a scalable algorithm. This method determines @(t+dt)
in solving the system Au(t + dt) = u(t) with (¢) known.

Jacobi iteration splits a coefficient matrix A = (D — T') into a diagonal
matrix D and another matrix T' with a zero diagonal. With a modicum of
algebra we can derive an iteration (™ = (D~'T)Z(™1) 4 D=1} from any
problem AZ = b. This iteration is known to converge to solutions of the
original equation if all eigenvalues of (D~'T") lie within the unit circle in the
complex plane. A Jacobi iteration is easy to construct from a given coefficient
matrix A. D~! is found by inverting each diagonal term d; independently,
while T' is just the negation of A with zero diagonal terms. For a finite
difference matrix like A in (6) the resulting (D7) is just d'T where d =
d; is the diagonal term which appears in every row of D. Applying this
transformation to the vector equation (6) results in the inner iteration (3).

4. DERIVATION OF PARAMETERS

We have shown that the finite difference representation of the heat equa-
tion is accurate to O(c) and we have chosen « to control the quality of the
balance which results from simulating the diffusion process. In this section
we determine the accuracy of the converged Jacobi iteration and derive a
formula for v which guarantees accuracy a. We then derive a formula for 7
which determines the number of “artificial time” steps over which the diffu-
sion occurs.

ACCURACY OF THE JACOBI ITERATION

From the GerSgorin disc theorem [7] we know the eigenvalues A of (3) are
bounded |A] < 1-?-%01' Since the row and column sums are constant and the
iteration matrix is nonnegative we know further ([7], theorem 8.1.22) that

the spectral radius equals the row sum

6a
1+ 6

o (D7) =)
Define the error in a current value @™ under the iteration (3) as e(@(™) =
(@(™) — &*) where @* is the fixed point of the Jacobi iteration. Then for v > 0

e(ii®) = (D)) = (DT e(il) (9)

which converges when p(D7'T) < 1 since p((D7'T)) = (p(D7'T))*. In
order for the algorithm to correctly reduce the error it is necessary to compute
the desired load at each time step to an appropriate accuracy. In order to
quantify the error define the infinity norm

lle(@™)]|c0 = max ul), — k.

wiyiz

e(ul™)

z‘!yY'z

= max
x’y’Z

Using this norm we can define a necessary condition for improving the accu-
racy of the solution @ by a factor « in v steps to be ||e(@®)]|co < @|e(@®)]|co-
From (9) we know that this is satisfied when (p(D'T"))* < « and thus (2)

ELAPSED TIME FOR THE DIFFUSION

In this section we determine the number of artificial time steps 7 required
to reduce the load imbalance by a factor . We do this by considering the
eigenstructure of the finite difference equation (5) which we rearrange to
express the change in load with each iteration

Ugy 2 (t + dt) = Uy 2() = @ [Ustiy,(E + dt) + Ug_1,y.(t + di)
+u:z:,y+1,z (t + dt) + 'U'a:,y—l,z(t + dt)
+uz‘,y,z+1 (t + dt) + Ug,y,z—1 (t + dt)

~Bug,y,.(t + dt)]

or as a vector equation with matrix operator L
d(t + dt) — u(t) = aLd(t + dt) (11)
Any load distribution #(t) can be written as a weighted superposition of

eigenvectors & of L
i(t) =) aijk(t) ik
i,k

Using this fact we can rewrite the vector equation (11) as

Y aigi(t +d)&iin — D aijr(t)Tigr = a Y Laiu(t +d)ae (12)

bk ok Lk
Using the definition of LZ; ;; and the eigenvalues of L

— —
LZi ik = —AijkTijk

i j k
Xijk =2 [3 — cos (271';;75) — €os (Qﬂ'm> — Cos (271’;11—/3)] (13)

we can further simplify (12)

> (@it + dt)Eix [1 + adijr] — aijr(t)Ziix) =0

2,7,k
and by the completeness and orthonormality of the eigenvectors

ai,j,k(t + dt) [1 + O[/\,"]"k] — a,',j,k(t) =0

ai,;x(0)
1+ a/\,-,j,k

It is apparent from equation (14) that convergence of the individual eigen-
modes is strongly dependent upon the eigenvalues A; ;. Reducing the am-
plitude of an arbitrary component z,7,k by « in 7 steps of the algorithm
requires [1 4+ aX; jx]”" < a. The worst case occurs for the smallest positive
eigenvalue Ao = (2 — 2 cos(2m/n'/?)) which corresponds to a smooth sinu-
soidal disturbance with period equal to the length of the computational grid.
To reduce such a disturbance requires

ai,jk(dt) = (14)

1 -1
T= 2 (15)
In [1 +a (2 — 2cos n%’rg)]
Convergence of this slowest component approaches Ina™! for large n since

lim In [1—|—a(2——2cos——2—7—r—>] =1

Convergence of highest wavenumber component A(,1/3)/2-1,(n1/3)/2-1,(n1/3)/2-1

is rapid because
Ina™?
= 1
T Ln T+ (6 c)af]“ (16)

These characteristics are well suited to our work in adaptive computational
fluid dynamics. The disruptions which occur are localized and can be treated
as a series of disruptions at individual processors. For these reasons we
consider the time to diffuse an expected case in which in a local area of
a large mesh becomes imbalanced. We consider the length of time which
must pass before the imbalance is reduced by a factor a. Our conclusion is
equation (1).

In the following text we use the Poisson bracket (-, -) to represent the inner
product operator. When discussing loads or eigenvectors we use @[z, y, z] or
Z; j k[, Y, z] to denote the vector element which corresponds to location z,y, z
of the computational grid with the convention that [0, 0, 0] is the first element
of the vector. Then the initial disturbance confined to a particular processor
z,y,z can be written as a superposition of eigenvectors of L

@(0) = > atmn(0)ZF1mn (17)

Im,n

10

If we assume u(0) to be zero at every element except [z,y, z] then

This is equal to the initial amplitude a; ;(0) of each eigenvector Z; j x

(£i1j7k7 ﬁ(0)> - <:i.’ia.7‘7k7 Z al,m,n(o)fl,m,n>

lym,n

= D> (Fijks Fimn) Aimn(0)

lym,n

= Z al,m,n(0)6il6jm 5kn

lymmn

= ai;k(0) (19)

The computational domain has periodic boundary conditions and as a re-
sult the origin of the coordinate system is arbitrary. Then without loss of
generality we can place the origin at the source of the disturbance and take
z =y = z = 0. This has no effect on the eigenvectors Z; ; » and from (18),
(19)

a;,jk(0) = i, £[0,0,0] (20)
Placing the origin at the source of the disturbance is particularly convenient

when we consider the first element of the eigenvectors &; ;£[0,0,0]. L has

(nll 3) /2 distinct eigenvalues); jx each of algebraic multiplicity two. Each
of these eigenvalues has geometric multiplicity eight, ie. has eight linearly
independent associated eigenvectors of unit length

zk
Zijklz,y, 2] = cijeF1 (271' 1/3) Fy (27r 1/3) F; (/3) (21)

where each F; is either sin or cos. By choosing z = y = z = 0 this expression
(21) is zero except for the single eigenvector for which Fi(z) = Fy(z) =
Fs(z) = cos(z). As a result without loss of generality we can' restrict our
consideration to initial disturbances of the form

u[0,0,0](0) = > cijiik[0,0,0] = 3¢ (22)

Lk 1,5,k

11

From (14) we define the time dependent disturbance at any location ', y’, 2’

dla’,y, 2|(rdt) = D eijrll +adijr]l Bijrle' v, 2]
ik

. —r z't

1,5,k
y'y 'k
Cos (27’(’ ;—575) cos (271’ W) (23)
In the appendix we show that c;;x = (8/n)"/? and thus the disturbance is a

summation of equally weighted eigenvectors. ;jFrom (22) and (23) the time
dependent disturbance at 0,0,0 is therefore

. 8 2ms 2] 2k \]""
4[0,0,0](7dt) = ~ g’% [1 + a2 (3 008 3z — €08 7z — €08 W)]

(24)
Solving %[0, 0,0](7dt) < a yields equation (1).

5. ALGORITHM FOR A TWO-DIMENSIONAL MESH

The algorithm for the two dimensional case is very similar to the three
dimensional case. The inequality for 7 becomes

nl/2 nl/2

4 271 2r3\]1 "
_Z[1+a2(2—cos 7m—cos 7”)] <a
7 =

£,

The new spectral radius of the iteration matrix (3) changes v

V,:[In(a) }
In (131:1(1)

and similarly the iteration itself

m) _ a (m—1) (m—1) (m—1) (m-—1) Ug
ugvy) - (1 + 4:a) (ux+17'y + uz_]-:y + um1y+1 + ua"fy_l) + 1 _I_ 4:0{

12

6. CONCLUSIONS

We have demonstrated that by starting with a model of the rebalancing
problem and applying established numerical methods to that model we arrive
at a scalable and concurrent load balancing algorithm for a mesh-connected
multicomputer. The essential features of this algorithm are that it diffuses
local disturbances rapidly, it can preserve task locality, and it can rebalance
local portions of a domain without interrupting the rest of the computation.

We do not claim that this algorithm is optimal and we identify a worst
case in which convergence could be very slow for large n. One strategy to
remove this worst case behavior would be to embed this algorithm within a
multigrid computation [9] in which balances are computed between coarser
subdivisions of the architectural mesh. We are continuing the theoretical
work on this problem by considering these sorts of alternative numerical
methods for the heat equation model as well as alternative models for load
balancing. We are continuing the practical work by implementing this al-
gorithm in an adaptive finite volume flow solver for irregular problems with
moving boundary conditions. We expect this experience to give us insight
into the policy decisions necessary to develop a practical implementation.

ACKNOWLEDGEMENTS

We are indebted to Andrew Conley for insightful discussions and criticisms.

13

APPENDIX: NORMALIZATION CONSTANT

In this appendix we demonstrate that the eigenvector normalization con-
stant ¢; ; x is equal to (8/n)'/2 for all eigenvectors 7; ;5. {From (21) a neces-
sary condition for a normalized eigenvector is

zk
1 = ”chos (27r1—/3> cos (27ry1—1/3> Ccos (271' 1/3)
2
= 2,53 (14 costn 1+ cosan) (1 + cosn 2
= Ci’j’ksmyz cos 4T ——= 1/3 cosdm— 73 cos dm 73
1 zk
_ 2
= cz-’j,kga%:z{(l—}—cosll‘/r 1/3) (1—|—cos47rm)

xi yJ zk
4+ cos (47rm) > cos <4wm> (1 + cos 4w ;7,1_/3) } (25)
z Y2

We can simplify the preceding expression if we make use of the following

Lemma 1
i)
E COS (47!' ;ﬁﬁ) = 0

Proof:

Z cos (471' :j—%) = ZRe (e fﬁ;)
41\':5;

= ReZe 173
= ReZ(e%‘_>

4me 47 11,1/3
e'nirs (1 — (ezﬁg))

B 47
1 —ent/?

= Re

Q.E.D.

14

Repeated application of lemma (1) to equation (25) yields

1 k
1 = cz?,j,kg > (1 + cos 4w 1/3> (1 +cos47rzl—/3)

LYz

= C?,j,k% lz (1 +cos47r) + > (cos47r1—/3> (1 + cos 4w 1]/63)]

LyYs2 TyY,2

= dirg [Zl-l— > (cos47r ok)l

LYy TyYy%
1
= C?,j,kgn (26)

From which we conclude

8 1/2
C,',j,k = (;) V i,j, k

13

References

[1] Anderson, D. A., Tannehill, J. C. & Pletcher, R. H. Computational Fluid
Mechanics and Heat Transfer. Hemisphere, New York, NY, 1984.

[2] Bertsekas, D. P. & Tsitsiklis, J. N. Parallel and Distributed Computa-
tion: Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

[3] Chandy, K. M. & Taylor, S. An Introduction to Parallel Programming.
Jones & Bartlett, Boston, MA, 1992.

[4] Cybenko, G. Dynamic load balancing for distributed memory multipro-
cessors. J. Parallel Distrib. Comput. 7 (1989), 279-301.

[5] Golub, G. H. & Van Loan, C. F. Matriz Computations. The Johns Hop-
kins University Press, Baltimore, MD, 1991.

[6] Hong, J., Tan, X. & Chen, M. jFrom local to global: an analysis of
nearest neighbor balancing on hypercube. Proc. 1988 ACM Sigmetrics
Conference on Measurement and Modeling of Computer Systems. Asso-
ciation for Computing Machinery, 1988, pp. 73-82.

[7] Horn, R. A. & Johnson, C. R. Matriz Analysis. Cambridge University
Press, New York, NY, 1991.

[8] Lin, F. C. H. & Keller, R. M. The gradient model load balancing method.
IEEFE Trans. Soft. Eng. SE-13, 1 (1987), 32-38.

[9] McCormick, S. F., Multigrid Methods. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1987.

[10] Noakes, M. & Dally, W. J. System design of the J-machine. In Dally, W.
J. (Ed.). Proceedings of the 6th MIT Conference on Advanced Research
in VLSI. MIT Press, Cambridge, MA, 1990, pp. 179-194.

[11] Seitz, C. L. Mosaic C: an experimental fine-grain multicomputer. Proc.
International Conference Celebrating the 25th Anniversary of INRIA,
Paris, France, December 1992, Springer-Verlag, New York, NY, 1992.

16

